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Abstract— In this paper, we propose a novel control law
for accurate tracking of aggressive (i.e., high-speed and high-
acceleration) quadcopter trajectories. The proposed method
tracks position and yaw angle with their derivatives of up
to fourth order, specifically, the position, velocity, acceleration,
jerk, and snap along with the yaw angle, yaw rate and yaw
acceleration. Two key aspects of the proposed method are the
following. First, the controller exploits the differential flatness
of the quadcopter dynamics to generate feedforward inputs for
attitude rate and attitude acceleration in order to track the jerk
and snap references. The tracking is enabled by direct control
of body torque using closed-loop control of all four propeller
speeds based on optical encoders attached to the motors.
Second, the controller utilizes the incremental nonlinear dynamic
inversion (INDI) method for accurate tracking of linear and
angular accelerations despite external disturbances. Hence, no
prior modeling of aerodynamic effects is required. We evaluate
the proposed control law in experiments under motion capture.
Using a 1-kg quadcopter, we are able to track a complex 3D
trajectory, reaching speeds up to 8.2 m/s and accelerations up
to 2g, while keeping the root-mean-square tracking error down
to 4.0 cm, in a flight volume that is roughly 6.5 m long, 6.5 m
wide, and 1.5 m tall.

SUPPLEMENTAL MATERIAL

A video of the experiments can be found at https://
youtu.be/M1lE9MlFmVA. An extended version of this
paper, including the derivation of the controller, a rigorous
analysis, and more extensive experimental results, is avail-
able [1].

I. INTRODUCTION

Accurate control of the aircraft during aggressive, i.e.,
high-speed and high-acceleration maneuvers is essential
towards enabling fully-autonomous drone flight. At high
speeds, the aerodynamic drag — which is hard to model —
becomes a dominant factor. Accounting for aerodynamics
is an important challenge in control design for vehicles
operating at high speeds. Recent research has addressed
this challenge through modeling [2]–[4], estimation [5], [6],
and learning [7] of such aerodynamic drag effects towards
tracking of high-speed trajectories.

In this paper, we propose a control system for accurate
trajectory tracking during aggressive maneuvering of quad-
copter aircraft, such as the one shown in Figure 1. The
controller exploits the differential flatness of the quadcopter
dynamics to generate feedforward control terms based on the
reference trajectory and its derivatives up to fourth order, i.e.,
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Fig. 1: Quadrotor with body-fixed reference system and
moment arm definitions.

position, velocity, acceleration, jerk, and snap along with yaw
angle, yaw rate, and yaw acceleration. Incremental nonlinear
dynamic inversion (INDI) is relied upon to handle external
disturbances, e.g., aerodynamic drag forces, without the need
for modeling or estimation of drag parameters.

The INDI technique has recently been developed [8],
[9], based on earlier derivations [10], [11], which provide
robustness by incrementally applying control inputs based on
inertial measurements. As such, it is able to alleviate robust-
ness issues from which regular nonlinear dynamic inversion
(NDI) controllers commonly suffer. INDI has been applied to
quadcopters for stabilization, e.g., for robust hovering [12],
[13], but not for trajectory tracking.

The differential flatness property allows expressing all
states and inputs of a dynamic system in terms of a set
of flat outputs and its derivatives [14]. In the context of
flight control, this property enables reformulation of the
trajectory tracking problem as a state tracking problem [15],
[16], which has also been applied to quadcopter trajectory
tracking [2], [17]–[19].

The control design presented in this paper is novel in
the following ways. Firstly, we develop a new control
methodology that enables the tracking of snap by accurately
controlling motor speeds. We recognize that snap is directly
related to vehicle angular accelerations, which can be tracked
by direct application of body torque commands. We achieve
such application of body torques through closed-loop control
of the motor speeds using measurements from optical en-
coders attached to each motor. To the best of our knowledge,
the direct control over snap using motor speed measurements
is novel. In contrast, trajectory tracking control based on
body rate inputs — e.g., using a typical inner-loop flight



controller — is incapable of truly considering reference
snap. Secondly, we develop a novel INDI control design
for quadcopter trajectory tracking. To the best of the our
knowledge, the proposed controller is the first design that
is tailored for trajectory tracking, as existing INDI control
designs focus on state regulation, e.g., for maintaining hover
under external disturbances. Finally, we demonstrate the
proposed controller in experiments, in which the proposed
control law enables a 1-kg quadcopter to track complex 3D
trajectories, reaching speeds up to 8.2 m/s and accelerations
up to 2g, while keeping the root-mean-square tracking error
down to 4 cm, in a flight volume that is roughly 6.5 m long,
6.5 m wide, and 1.5 m tall.

The paper is structured as follows: In Section II, the
quadrotor model is specified, and we show how feedforward
control inputs are formulated in terms of the reference tra-
jectory using differential flatness. In Section III, we describe
the architecture of the trajectory tracking controller. Finally,
we give experimental results from real-life flights in Section
IV.

II. PRELIMINARIES

In this section, we describe the quadrotor dynamics and
we show how the differential flatness property is utilized
to derive feedforward attitude rate and attitude acceleration
references. For full the derivation of the differential flatness
results, the reader is referred to [1].

A. Quadrotor Model

We consider a 6 degree-of-freedom (DOF) quadrotor, as
shown in Fig. 1. The depicted basis vectors of the body-fixed
reference frame form the rotation matrix R = [bx by bz] ∈
SO(3), which gives the transformation from the body-fixed
reference frame to the inertial reference frame. The columns
of the identity matrix I = [ix iy iz] give the basis of the
inertial reference frame.

The vehicle dynamics are given by

ẋ = v, (1)

v̇ = giz + τbz +m−1fext, (2)

ξ̇ = SΩ, (3)

Ω̇ = J−1(µ+ µext −Ω× JΩ), (4)

where x and v are the position and velocity in the inertial
reference frame, respectively, ξ = [φ θ ψ]T is the roll-pitch-
yaw Euler attitude vector, and Ω = [p q r]T is the angular
velocity in the body-fixed reference frame. The gravitational
acceleration is indicated by g, the specific trust, i.e., the ratio
of total thrust T and the vehicle mass m, by τ , and the control
moment vector by µ. The matrices J and S are respectively
the vehicle moment of inertia tensor, and the transformation
matrix relating attitude rate ξ̇ and angular velocity Ω. Finally,
the external disturbance force fext and moment µext account
for all remaining forces and moments acting on the vehicle,
including, e.g., aerodynamic drag.

The total thrust T and control moment µ are a function
of the four-element vector of rotor speeds ω, according to[

µ
T

]
= G1ω

◦2 + G2ω̇, (5)

where ◦ indicates the Hadamard power,

G1 =


lykτ −lykτ −lykτ lykτ
lxkτ lxkτ −lxkτ −lxkτ
−kµz

kµz
−kµz

kµz

−kτ −kτ −kτ −kτ

 , (6)

with lx and ly the moment arms indicated in Fig. 1, kτ
and kµz indicate the motor thrust and torque coefficients,
respectively, and

G2 =


0 0 0 0
0 0 0 0
−Jrz Jrz −Jrz Jrz

0 0 0 0

 (7)

with Jrz the rotor and propeller moment of inertia. We only
consider the z-component of the rotor speed, and note that
additional gyroscopic contributions may be neglected [12].

B. Differential Flatness

The differential flatness property enables us to express
reference states as a function of the four flat outputs (and
their derivatives) given by the reference trajectory function
[20]:

σref (t) = [xref (t)T ψref (t)]T , (8)

which consists of the quadrotor position in the inertial
reference frame xref (t) ∈ R3, and the vehicle yaw angle
ψref (t) ∈ T, where T denotes the circle group. For con-
venience, we do not explicitly write the time argument t
everywhere. We assume that xref is of differentiability class
C4, i.e., its first four derivatives exist and are continuous,
and that ψref is of class C2. By successive differentiation
of xref , we obtain the reference velocity vref , the reference
acceleration aref , the reference jerk jref , and the reference
snap sref . Similarly, we obtain references for the yaw rate
ψ̇ref , and the yaw acceleration ψ̈ref by differentiation of
ψref .

We denote reference states — directly obtained from the
reference trajectory — with the same subscript, i.e., ref . The
reference states for angular rate and angular acceleration will
be applied as feedforward inputs in the trajectory tracking
control design.

By taking the derivative of (2), we obtain the following
expression for the jerk:

j = τR [iz]
T
× S−1ξ̇ + τ̇bz, (9)

where [•]× indicates the cross-product matrix. Equation (9)
shows that the jerk is affine in ξ̇. Thus, the relation can be
inverted to obtain the expression

ξ̇ref =
1

τ

 −bTy
bTx / cosφ

0

 jref + ψ̇ref

 sin θ
− cos θ tanφ

1

 ,
(10)



which gives the reference attitude rate ξ̇ref as a function of
jref and ψ̇ref . We note that fext is considered constant here,
as its dynamics are unmodeled.

To obtain the attitude accelerations φ̈ref and θ̈ref , we first
compute the derivative of (9):

s = R
(
τ̈ iz + (2τ̇ + τ [Ω]×) [iz]

T
× Ω + τ [iz]

T
× Ω̇

)
, (11)

where (by taking the derivative of (3))

Ω̇ = −S−1ṠΩ + S−1ξ̈. (12)

Hence, (11) is affine in ξ̈, and by inversion we obtain the
following expression for the reference attitude acceleration
ξ̈ref in terms of sref and ψ̈ref :

ξ̈ref =
1

τ

 −bTy
bTx / cosφ

0

 sref + ψ̈ref

 sin θ
− cos θ tanφ

1


−

 1 0 0
0 1 0
0 0 0

C−1e (13)

with

C = τ (cφsψ − cψsφsθ) τcφcψcθ sψsφ+ cψsθcφ
−τ (cφcψ + sφsψsθ) τcφcθsψ −cψsφ+ sψsθcφ

−τcθsφ −τcφsθ cθcφ


(14)

and

e = R
(

(2τ̇ + τ [Ω]×) [iz]
T
× Ω− τ [iz]

T
× S−1ṠΩ

)
. (15)

The abbreviations c and s denote cos and sin, respectively.

III. TRAJECTORY TRACKING CONTROL

The proposed controller aims to accurately follow the
reference trajectory σref by tracking not only the position
and yaw references, but also their derivatives up to the
fourth order. As shown in Section II-B, reference states are
obtained from the high-order derivatives using the differential
flatness property of the quadrotor dynamics. These reference
states are used as feedforward control inputs in the trajectory
tracking control. The resulting control design consists of
several components based on various control methods, as
given in Table I.

In order to apply INDI linear and angular acceleration
control, the current accelerations are obtained through ac-
celerometer measurements and differentiated gyroscope mea-
surements [8]. The inertial measurement unit (IMU) signals
are filtered using a digital second-order Butterworth low-pass
filter (LPF) to alleviate the effects of airframe vibrations and
other noise sources. We denote the LPF linear acceleration
output (in body-fixed reference frame) abf , and the LPF
angular rate output Ωf . The derivative Ω̇f is readily available
if a canonical realization is used for integration of the LPF
dynamics. We use af to denote the gravity-corrected LPF
acceleration output in the inertial reference frame, i.e.,

af = Rabf + giz. (16)

A. PD Position and Velocity Control

Position and velocity control is based on the following
Proportional-Derivative (PD) controller:

ac = Kx (xref − x) + Kv (vref − v)

+ Ka (aref − af ) + aref (17)

with K• indicating diagonal gain matrices.
Throughout this paper, we use the subscript c to indicate

commanded values that are computed in one of the control
loops. In contrast, the subscript ref indicates a value ob-
tained directly from the reference trajectory, e.g., ac includes
control terms based on the position and velocity deviations,
while aref is obtained directly from the reference trajectory
as the second derivative of xref .

B. INDI Linear Acceleration Control

An INDI-based quadcopter linear acceleration controller
was derived based on Taylor series approximation in [13]. In
this section, we arrive at equivalent control equations using
a derivation based on the estimation of the external forces
acting on the quadrotor. We find that this derivation helps
intuitive understanding of the practical working of INDI.

By rewriting (2), we obtain an expression for the external
force acting on the quadrotor in terms of measured acceler-
ation and specific thrust, as follows:

fext = m (af − τfbz − giz) (18)

with τf the specific thrust calculated according to (5) using
filtered motor speed measurements ωf . The identical LPF
is applied to both IMU measurements and measured motor
speeds to ensure that the same phase lag is incurred by both
signals [12].

Changes in fext are difficult to predict, so we treat it as a
constant and substitute its expression (18) into (2):

a = τbz + giz +m−1fext

= τbz + giz +m−1 (m (af − τfbz − giz)) (19)
= τbz − τfbz + af .

Even though fext is considered as a constant in (19), fast
changes in external force are in practice accounted for by
setting the IMU rate sufficiently high.

Based on (19), we compute the specific thrust vector
command that results in the commanded acceleration as
prescribed by (17), using the following incremental relation:

(τbz)c = τfbz + ac − af . (20)

The incremental nature of (20) eliminates the need for
integral action; if the commanded acceleration is not im-
mediately achieved, the thrust and attitude commands will
be incremented further in subsequent control updates. Con-
sequently, no integrator gains are needed in (17).

The commanded thrust can directly be obtained as

Tc = −m‖(τbz)c‖2 (21)

with the negative sign following from the definition that
thrust is positive in bz-direction, and the commanded roll



TABLE I: Overview of trajectory tracking controller components.

Component Methodology Reference Control Output Description
Position and Velocity Control PD xref , vref , aref ac Section III-A
Linear Acceleration Control INDI ac φc, θc, Tc Section III-B
Jerk and Snap Tracking Differential Flatness jref , sref , ψ̇ref , ψ̈ref ξ̇ref , ξ̈ref Section II-B
Attitude and Attitude Rate Control NDI φc, θc, ψref , ξ̇ref , ξ̈ref Ω̇c Section III-C
Angular Acceleration Control INDI Ω̇c µc Section III-D
Moment and Thrust Control Inversion µc, Tc ωc Section III-E
Motor Speed Control Integrative ωc ζ Section III-E

φc and pitch θc are uniquely defined by the following
expressions, based on trigonometric interpretation of bz [1]:

φc = arcsin

(
(τbz)

T
c (ix sinψref − iy cosψref )

‖(τbz)c‖2

)
, (22)

θc = arctan

(
(τbz)

T
c (ix cosψref + iy sinψref )

(τbz)Tc iz

)
. (23)

C. NDI Attitude and Attitude Rate Control

NDI, or feedback linearization, of the angular kinematics
allows us to obtain a controller that takes into account
nonlinear angular dynamics, but that can be tuned using
linear techniques, such as pole placement and LQR [21].
The NDI controller is based on the dynamics system

χ̇ = f (χ) + g (χ) Ω̇ =

[
SΩ
03×1

]
︸ ︷︷ ︸

f (χ)

+

[
03×3

I

]
︸ ︷︷ ︸

g(χ)

Ω̇ (24)

with χ = [ξT ΩT ]T , and the output function

h(χ) = ξ. (25)

The body-frame angular acceleration Ω̇ serves as the input of
the state dynamics equation. This has two major advantages
compared to using the control torque µ as input. Firstly, the
NDI controller is solely based on model-independent angular
kinematics equations. Therefore it does not suffer from inver-
sion discrepancies due to model mismatches. Secondly, the
commanded body torque µ is separately determined by the
INDI controller described in Section III-D, which considers
the external moment µext based on IMU measurements. This
eliminates the need to incorporate a complicated model of
the external moment in (24), and thereby further improves
controller robustness and simplicity.

Feedback linearization of (24) results in the following
equivalent linear double integrator system:

ξ̈ = ū. (26)

The virtual control ū is obtained using the NDI control
mapping

ū = L2
f h (χ) + LgLf h (χ) Ω̇ (27)

with Lnf h(χ) the n-th Lie derivative of the function h(χ)
with regard to the vector field f .

An attitude controller is designed to track the commanded
state ηc = [ξTc ξ̇

T

ref ]T . The attitude command ξc =
[φc θc ψref ]T consists of roll and pitch prescribed by the
acceleration controller in (22) and (23), and yaw prescribed

directly by the reference trajectory. As given by (10), the
first two elements of the attitude rate command ξ̇ref =

[φ̇ref θ̇ref ψ̇ref ]T are prescribed by the reference jerk
through differential flatness, and the final element is obtained
by differentiation of the reference yaw. The resulting linear
controller has the form

u = Kξ (ξc − ξ) + Kξ̇

(
ξ̇ref − ξ̇f

)
, (28)

where ξ̇f has the subscript f because it is obtained by
transformation of the filtered gyro rate Ωf using (3).

Through differential flatness, we also obtain the attitude
acceleration reference ξ̈ref = [φ̈ref θ̈ref ψ̈ref ]T as a
function of reference snap, and the second derivative of the
reference yaw, as given by (13). This attitude acceleration
reference is directly added to the virtual control u to obtain
the commanded attitude acceleration:

ξ̈c = u + ξ̈ref . (29)

This direct addition of feedback and feedforward control in-
puts is permitted by linearity of (26). Finally, the commanded
angular acceleration in the body-frame Ω̇c is obtained by
setting ū = ξ̈c and inverting the NDI control mapping (27),
as follows:

Ω̇c =
(
LgLf h (χ)

)−1
(
ξ̈c − L2

f h (χ)
)

= S−1
(
ξ̈c − L2

f h (χ)
)
. (30)

The attitude controller differs from a typical nonlinear
attitude controller, because it not only tracks the attitude
command, but also attitude rate and acceleration based on the
trajectory jerk and snap. Essentially, the controller exploits
its knowledge of the trajectory to predict future attitude
commands.

D. INDI Angular Acceleration Control

Our proposed INDI controller tracks the angular accelera-
tion command Ω̇c obtained by (30). This command incorpo-
rates tracking of the reference snap through the feedforward
term ξ̈ref . Trajectory tracking based on body rate control,
e.g., using an off-the-shelf inner-loop flight controller, is
incapable of considering reference snap, because snap cor-
responds to the vehicle angular acceleration by (13).

State-of-the-art INDI control tracks angular acceleration
based on linearization of the control effectiveness equa-
tion [12], [13]. We present an INDI implementation based
on nonlinear inversion of (5), which improves the accuracy



of thrust and control moment tracking, when compared to
linearized inversion.

We rewrite (4) to obtain the following expression for the
external moment based on the measured angular rate, angular
acceleration, and control moment:

µext = JΩ̇f − µf + Ωf × JΩf (31)

with µf the control moment in the body-fixed reference
frame, obtained from the measured motor speed ωf by (5).

Analogous to the external force in Section III-B, the
external moment µext is considered a constant, because its
behavior is unmodeled. Substitution of (31) into (4) then
gives:

Ω̇ = J−1(µ+ µext −Ω× JΩ)

= J−1(µ+ (JΩ̇f − µf + Ωf × JΩf )−Ω× JΩ)

= Ω̇f + J−1(µ− µf ). (32)

The change in the contribution of angular momentum is
neglected under the assumption of separation of time scales;
it is assumed to be much slower changing compared to the
motor dynamics. By inversion of the final line of (32), we
obtain the control moment command required to achieve the
commanded angular acceleration Ω̇c, as follows:

µc = µf + J
(
Ω̇c − Ω̇f

)
. (33)

E. Inversion-Based Moment and Thrust Control, and Inte-
grative Motor Speed Control

At this point, we have computed the commanded thrust
Tc and control moment µc by (21) and (33), respectively.
Tracking of these commands requires control of the motor
speeds as can be observed from the direct relation given in
(5). Fast and accurate motor speed control can be achieved
using loop closure based on motor speed feedback. More-
over, accurate motor speed measurements are also required
in INDI control for calculation of τf and µf in (20) and
(33), respectively. To obtain the motor speeds, we employ
an optical encoder that measures the motor rotation period
by detecting the passage of a reflective strip on the side of
the motor hub. The optical encoder, shown in Fig. 2, provides
a high-rate, accurate, lightweight and unintrusive manner to
obtain the motor speed.

The commanded thrust and control moment are used to
solve (5) for the commanded motor speeds. In order to
do so, the equation is discretized using finite-difference
approximation over the time interval ∆t, resulting in the
following relation:[

µc
Tc

]
= G1ω

◦2
c + ∆t−1G2(ωc − ωf ), (34)

which can be solved numerically, e.g., using Newton’s
method, to obtain the commanded motor speed vector ωc.
Inversion of this nonlinear control effectiveness relation
improves the accuracy of thrust and control moment tracking,
when compared to linearized inversion, e.g., as shown in
[13].

Fig. 2: Motor (propeller removed) with optical encoder
that measures rotation speed. The optical encoder lens, and
accompanying reflective strip can be seen to the right, and
on the front side of the motor hub, respectively.

TABLE II: Tracking performance for experiments with var-
ious reference trajectory parameters.

k [rad/s] 1.125 0.9 0.9 0.9
ψ̇ref [rad/s] 0 0 π

2
π

RMS ‖x− xref‖2 [cm] 4.0 1.8 2.0 2.8
max ‖x− xref‖2 [cm] 9.4 4.1 4.8 6.5
RMS |ψ − ψref | [deg] 15 6.7 6.7 5.0
max |ψ − ψref | [deg] 36 14 21 16
RMS ‖v‖2 [m/s] 4.2 3.3 3.3 3.3
max ‖v‖2 [m/s] 8.2 6.6 6.6 6.6
RMS ‖a− giz‖2 [m/s2] 13 11 11 11
max ‖a− giz‖2 [m/s2] 19 15 15 15

The pulse width modulation vector ζ contains the com-
mands that are sent to the four ESCs, and is obtained as
follows:

ζ = p(ωc) + KIω

∫
ωc − ω d t (35)

with p a vector-valued polynomial function relating motor
speeds to PWM inputs. This function was obtained by
regression analysis of static test data. Integral action is added
to account for loss of control effectiveness with decreasing
battery voltage. The measured signal ω remains unfiltered
here to minimize phase lag.

IV. EXPERIMENTAL RESULTS

In this section, experimental results for high-speed, high-
acceleration flight are presented.

A. Experimental Setup

Experiments were performed in an indoor flight room
using the quadcopter shown in Fig. 1. The 980 g quadcopter
carries a Nvidia Jetson TX2 for control computations at 500
Hz, and an IMU to obtain linear acceleration and angular rate
measurements at 100 Hz. Position, velocity, and orientation
are obtained from a motion capture system at 360 Hz. Optical
encoders are attached to the motors to measure the motor
speeds at 400 Hz. Low-pass filtering of IMU and motor speed
measurements is performed using a software second-order
Butterworth filter with cutoff frequency 188.5 rad/s (30 Hz).
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Fig. 3: Trajectories for experiments with various reference trajectory parameters.
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Fig. 4: Position tracking error.
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B. Evaluation of Proposed Controller

We evaluate the performance of the trajectory tracking
controller on a complicated 3D trajectory, defined as follows:

σref (t) =


rxy (sin kt+ cos kt− cos 2kt)

rxy
(
cos kt− cos 2kt+ cos 2

3kt− 1
)

rz (cos 2kt+ sin kt− 1)

ψ̇ref t

 (36)

with rxy = 1.5 m, rz = 0.5 m, and k a parameter used to
set velocity. The reference yaw rate ψ̇ref is constant. Figure
3 shows the reference trajectory, along with experimental
results for various k and ψ̇ref . Corresponding performance
data are given in Table II. Each positional reference lap is
traversed in 6π

k s, but the yaw angle reference signal is not
synchronized between these laps.

The experiment with k = 1.125 rad/s reaches a maxi-
mum speed of 8.2 m/s, while maintaining an RMS position
tracking error of 4.0 cm. The position error components and
Euclidean norm are shown in respectively Fig. 4a and Fig.
4c, and the trajectory speed is shown in Fig. 5. The vehicle
attains a maximum acceleration of 19 m/s2 (2 g).

To demonstrate trajectory tracking performance in flight
with high commanded yaw rate, three flights are performed
with k = 0.9 rad/s, and ψ̇ref = 0 rad/s, ψ̇ref = π

2 rad/s and
ψ̇ref = π rad/s, respectively. The resulting position error is
shown in Fig. 4b and Fig. 4d. It can be seen that the trajectory
tracking controller is able to maintain accurate tracking of
the position reference, even if a high yaw rate is prescribed.
An RMS position tracking error of no more than 2.0 cm
is achieved for ψ̇ref = 0 rad/s and ψ̇ref = π

2 rad/s. For
ψ̇ref = π rad/s, the error increases somewhat to 2.8 cm.
Figure 6 shows that yaw tracking performance is consistent
even for large yaw rates.

V. CONCLUSIONS

In this paper, we studied the problem of designing control
systems for the tracking of aggressive, i.e., fast and agile,
trajectories for quadrotor vehicles. We proposed a novel
control system based on incremental nonlinear dynamic
inversion and differential flatness to track position and yaw
angle with their derivatives of up to fourth order, specifically,
the position, velocity, acceleration, jerk, and snap along with
the yaw angle, yaw rate and yaw acceleration. The tracking
of reference snap is enabled by closed-loop control of the
propeller speeds using optical encoders attached to each
motor hub. The robust control design eliminates the need
for modeling or estimation of aerodynamic drag parameters.
The controller achieves 4.0 cm RMS position tracking error
in agile and fast flight, reaching a top speed of 8.2 m/s and
acceleration of 2g, in a 6.5 m long, 6.5 m wide, and 1.5 m
tall flight volume.
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